

RECALIBRATION DUE DATE:

January 24, 2019

Certificate of Calibration

			Calibration	Certificati	on Informat	tion		
Cal. Date:	January 24	, 2018	Roots	smeter S/N: 438320 Ta: 2			293	°К
Operator:	Jim Tisch	lim Tisch			Pa: 756			mm Hg
Calibration	Model #:	TE-5025A	Calib	prator S/N:	3166			
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ]
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4430	3.2	2.00	1
	2	3	4	1	1.0270	6.4	4.00	1
	3	5	6	1	0.9220	7.9		
	4	7	8	1	0.8780	8.7		
	5	9	10	1	0.7270	12.6	8.00	
			C	ata Tabula	ition]
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>)		Qa	$\sqrt{\Delta H(Ta/Pa)}$	
	(m3)	(x-axis)	(y-ax	is)	Va	(x-axis)	(y-axis)	
	1.0087	0.6990	1.423	33	0.9958	0.6901	0.8799	
	1.0044	0.9780	2.012	29	0.9915	0.9655	1.2443	
	1.0024	1.0872	2.250	The second se	0.9896	1.0733	1.3912	
	1.0013	1.1404	2.360		0.9885	1.1259	1.4591	
	0.9961	1.3701	2.846		0.9834	1.3526	1.7598	
		m=	2.122	THE OWNER OF THE OWNER		m=	1.32895	
	QSTD	b=	-0.060		QA	b=	-0.03719	
		r=	0.999	99		r=	0.99999	
	L	1		Calculatio				
			/Pstd)(Tstd/Ta)	Conception of the local division of the loca	∆Vol((Pa-∆I	P)/Pa)	
	Qstd=	Vstd/∆Time				Va/∆Time		
		11	For subsequ	ent flow ra	te calculation	ns:		
	Qstd=	1/m ((√∆H(·	Pa <u>(Tstd</u> Pstd Ta)-b)	Qa=	1/m ((√∆F	н(Та/Ра))-b)	
	Standard	Conditions						
Tstd:	298.15			1		RECA	LIBRATION	
Pstd:	and the second se	mm Hg					1 11	
All calibrate	and the second se	ey er roading (in	1120)				nnual recalibratio	
		er reading (in eter reading (Regulations Part 5	Contraction of the Second
and the second se		perature (°K)					, Reference Meth	
		essure (mm l	Hg)				ended Particulate	
o: intercept					the	e Atmosphe	ere, 9.2.17, page 3	30
n: slope				1				

Tisch Environmental, Inc.

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA1b	Calbration Date :	19-Dec-18
Equipment no.	:	HVS001	Calbration Due Date :	18-Feb-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition								
Temperature, T _a		29	293 Kelvin Pressure, P a 10			020 mmHg		
	Orifice Transfer Standard Information							
Equipment No.		Ori31	66	Slope, m _c	2.122	31	Intercept, bo	-0.06016
Last Calibration Date		24-Jan	-18		(HxP	_a / 1013	3.3 x 298 /	'Τ _a) ^{1/2}
Next Calibration Date		24-Jan	-19		=	m _c x	$Q_{std} + b_c$	
Calibration of TSP								
Calibration	Manometer Reading			Q,	td	Continuous Flow		IC
Point	н	(inches c	of water)	(m ³ / min.)		Reco	rder, W	W(P _a /1013.3x298/T _a) ^{1/2} /35.3 ¹
	(up)	(down)	(difference)	X-a:	cis	(C	FM)	Y-axis
1	1.6	1.6	3.2	0.88	12		26	26.3074
2	2.7	2.7	5.4	1.13	62		34	34.4020
3	4.0	4.0	8.0	1.37	68		45	45.5321
4	5.2	5.2	10.4	1.56	58		48	48.5676
5	6.3	6.3	12.6	1.72	07		54	54.6385
By Linear Regression of Y o	on X							
s	Slope, m	=	33.7	706	Inte	rcept, b =	-3.	2329
Correlation Coe	efficient*	=	0.99	933				
Calibration A	ccepted	=	Yes/I	No**				

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :					
Calibrated by	:	Henry Lau	Checked by	:	Chan Ka Chun
Date	:	19-Dec-18	Date	:	19-Dec-18

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA2a	Calbration Date	:	19-Dec-18
Equipment no.	:	HVS002	Calbration Due Date	:	18-Feb-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition										
Temperature, T _a		29	93	Kelvin	Pressure,	Pa		1020 mmHg		
	Orifice Transfer Standard Information									
Equipment No.		Ori31	66	Slope, m _c	2.122	31	Intercept,	bc	-0.06016	
Last Calibration Date		24-Jan	-18		(Hxl	P _a / 10	13.3 x 298	/T _a)	1/2	
Next Calibration Date		24-Jan	-19		=	m _c	$x Q_{std} + b$	с		
Calibration of TSP										
Calibration	Manometer Reading			Q	std	Conti	nuous Flow		IC	
Point	H (inches of water)		(m ³ /	(m ³ / min.)		order, W	order, W (W(P _a /1013.3x298/T _a)			
	(up)	(down)	(difference)	X-a	xis		(CFM)		Y-axis	
1	1.5	1.5	3.0	0.8	541		28		28.3311	
2	2.2	2.2	4.4	1.0	284		32		32.3784	
3	3.7	3.7	7.4	1.3	253		40		40.4730	
4	4.5	4.5	9.0	1.4	586		44		44.5203	
5	6.0	6.0	12.0	1.6	799		52		52.6149	
By Linear Regression of Y o	on X									
5	Slope, m	=	29.0	948	Inte	rcept, b	=2	2.7348		
Correlation Co	efficient*	=	0.99	963	_					
Calibration A	ccepted	=	Yes/I	\o **	_					

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :	
-----------	--

Calibrated by	:	Henry Lau	Checked by :	Chan Ka Chun
Date	:	19-Dec-18	Date :	19-Dec-18

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA3a	Calbration Date	:	19-Dec-18
Equipment no.	:	HVS012	Calbration Due Date	:	18-Feb-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a			293	Kelvin	Pressure, I	Pa		1020	mmHg
	Orifice Transfer Standard Information								
Equipment No.		Ori31	66	Slope, m _c	2.1223	31	Intercept, k	oc	-0.06016
Last Calibration Date		24-Jan	า-18		(HxP _a	/ 1013.	3 x 298 / 1	T _a) ^{1/2}	
Next Calibration Date		24-Jan	ו-19		=	m _c x	x Q _{std} + b	с	
Calibration of TSP									
Calibration	Ma	anometer	Reading	Q _{std}		Continuous Flow		IC	
Point	H (inches of water)			(m ³ / min.)		Reco	order, W	(W(P _a /1013.3	x298/T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	X-axis	;	(C	CFM)	Y	-axis
1	1.2	1.2	2.4	0.7669)	:	20	20	.2365
2	2.0	2.0	4.0	0.9819)		28	28	.3311
3	3.5	3.5	7.0	1.2897	7	:	37	37	.4375
4	4.5	4.5	9.0	1.4586	3		41	41	.4848
5	5.5	5.5	11.0	1.6096	3		50	50	.5912
By Linear Regression of Y o	on X								
\$	Slope, m		33	3.7811	Inter	rcept, b =		5.6420	
Correlation Coe	efficient*	=	0).9918	_				
Calibration A	Accepted	=	Ye	es/No**	-				
					-				

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :					
Calibrated by	:	Henry Lau	Checked by	:	Chan Ka Chun
Date	: _	19-Dec-18	Date	:	19-Dec-18

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA4a	Calbration Date	:	19-Dec-18
Equipment no.	:	HVS004	Calbration Due Date	:	18-Feb-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition										
Temperature, T _a		29	93	Kelvin	Pressure,	Pa		1020 m		
Orifice Transfer Standard Information										
Equipment No.		Ori31	66	Slope, m _c	2.122	31	Intercept,	bc	-0.06016	
Last Calibration Date		24-Jan	-18		(Hxl	P _a / 10	13.3 x 298	$/T_a)$	1/2	
Next Calibration Date		24-Jan	-19		=	m _c	x Q _{std} + b	с		
Calibration of TSP										
Calibration	Manometer Reading			Q	std	Contin	uous Flow		IC	
Point	H (inches of water)			(m ³ / min.)		Reco	order, W	(W(P _a /10	13.3x298/T _a) ^{1/2} /35.31)	
	(up)	(down)	(difference)	X-axis		(0	CFM)		Y-axis	
1	1.5	1.5	3.0	0.8	541		24		24.2838	
2	2.0	2.0	4.0	0.9	319		31		31.3666	
3	3.6	3.6	7.2	1.3)76		40		40.4730	
4	4.2	4.2	8.4	1.4	101		47		47.5558	
5	5.7	5.7	11.4	1.6	381		56		56.6622	
By Linear Regression of Y	′ on X									
Slope, m = 39.8				624	Inte	rcept, b =	-	9.2955		
Correlation Coe	efficient*	=	0.99	932						
Calibration A	Calibration Accepted = Yes/Ne**									

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks : _____

Calibrated by	:	Henry Lau	Checked by	Chan Ka Chun
Date	:	19-Dec-18	Date :	19-Dec-18

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA5b	Calbration Date	:	19-Dec-18
Equipment no.	:	HVS010	Calbration Due Date	:	18-Feb-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

	Ambient Condition									
Temperature, T _a		293		Kelvin	Pressure,	Pa	1020 mmHg			
			Orifice Tr	ansfer Stan	dard Inform	nation				
Equipment No.		Ori316	6	Slope, m _c	2.122	31	Intercept,	bc	-0.06016	
Last Calibration Date		24-Jan-1	8		(Hxl	P _a / 101	3.3 x 298	/T _a) 1	1/2	
Next Calibration Date		24-Jan-1	9		=	m _c x	$Q_{std} + b$	с		
	Calibration of TSP									
Calibration	Man	ometer R	eading	Q	std	Continu	ious Flow		IC	
Point	H (inches of water)			(m ³ /	/ min.) Record		rder, W	(W(P _a /10 ⁻	13.3x298/T _a) ^{1/2} /35.31)	
	(up)	(down)	difference	X-a	xis	(C	FM)		Y-axis	
1	1.5	1.5	3.0	0.85	541	:	25		25.2956	
2	2.8	2.8	5.6	1.15	566	:	34		34.4020	
3	3.6	3.6	7.2	1.30)76	:	38		38.4493	
4	4.8	4.8	9.6	1.50)55		46		46.5439	
5	6.0	6.0	12.0	1.67	799		54		54.6385	
By Linear Regression of Y	′ on X									
Slope, m = 35				.1088	Inte	rcept, b =	-	5.8015		
Correlation Coe	efficient*	=	0.	9935						
Calibration A	ccepted	=	Yes	s/No**	-					

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks : _____

Calibrated by	:	Henry Lau	Checked by	:	Chan Ka Chun
Date	:	19-Dec-18	Date	:	19-Dec-18

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA6a	Calbration Date	:	19-Dec-18
Equipment no.	:	HVS013	Calbration Due Date	:	18-Feb-19

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition											
Temperature, T _a		293	5	Kelvin	Pressure,	Pa		1020 mmF			
Orifice Transfer Standard Information											
Equipment No.		Ori316	6	Slope, m _c	2.122	31	Intercept,	bc	-0.06016		
Last Calibration Date		24-Jan-1	8		(Hx	P _a / 101	3.3 x 298	/T _a) ^{1/2}		
Next Calibration Date		24-Jan-1	9		=	m_c y	κQ _{std} + b	c			
	Calibration of TSP										
Calibration	Man	ometer R	eading	Q,	std	Continu	ious Flow		IC		
Point	H (inches of water)			(m ³ /	(m ³ / min.) Recor		rder, W	(W(P _a /	1013.3x298/T _a) ^{1/2} /35.31)		
	(up)	(down)	difference	X-a	xis	(C	CFM)		Y-axis		
1	1.4	1.4	2.8	0.82	261		28		28.3311		
2	2.3	2.3	4.6	1.05	509		33		33.3902		
3	3.7	3.7	7.4	1.32	253		41		41.4848		
4	4.8	4.8	9.6	1.50)55		46		46.5439		
5	6.0	6.0	12.0	1.67	799		54		54.6385		
By Linear Regression of Y	′ on X			<u>.</u>		·					
s	Slope, m	=	30	.1687	Inte	rcept, b =	:	2.3363			
Correlation Coe	Correlation Coefficient* =										
Calibration A	Calibration Accepted =										

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks : _____

Calibrated by	:	Henry Lau	Checked by	:	Chan Ka Chun
Date	:	19-Dec-18	Date	:	19-Dec-18

综合試驗 有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

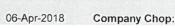
Certificate No.:	18CA0322 01			Page	1	of	2
Item tested							
Description: Manufacturer: Type/Model No.: Serial/Equipment No.: Adaptors used:	Sound Level Meter (Larson Davis LxT1 0003737 -	Type 1)	, , ,	Microphone PCB 377B02 171529			
Item submitted by							
Customer Name: Address of Customer: Request No.: Date of receipt:	Lam Geotechnics Lto - - 22-Mar-2018	d.					
Date of test:	28-Mar-2018						
Reference equipment	used in the calibra	tion					
Description: Multi function sound calibrator Signal generator	Model: B&K 4226 DS 360	Serial No. 2288444 61227		Expiry Date: 08-Sep-2018 01-Apr-2018		Traceabl CIGISMEC CEPREI	
Ambient conditions							
Temperature: Relative humidity:	21 ± 1 °C 50 ± 10 %						

ZI±IC
50 ± 10 %
1005 ± 5 hPa

Test specifications

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results


This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No CARP152-1/Issue 1/Rev C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黃竹坑道37號利達中心12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA0322 01

Page 2 of

1, Electrical Tests

The electrical tests were perfomed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
	С	Pass	0.8	2.1
	Lin	Pass	1.6	2.2
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	N/A	N/A	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0.3 0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

2	Λ	- End -	J.	
Calibrated by:	1~1	Checked by:	1	
	Fung Chi Yip		Lam Tze Wai	
Date:	28-Mar-2018	Date:	06-Apr-2018	

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No CARP152-2/Issue 1/Rev C/01/02/2007

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	18CA1114 02			Page	1	of	2
Item tested							
Description:	Sound Level Mete	r (Type 1)	,	Microphone			
Manufacturer:	B & K		,	B&K			
Type/Model No.:	2236		,	4188			
Serial/Equipment No.:	2100736		,	2288941			
Adaptors used:	-		,	-			
tem submitted by							
Customer Name:	Lam Environmenta	al Service Ltd.					
Address of Customer:	-						
Request No.:	-						
Date of receipt:	14-Nov-2018						
Date of test:	15-Nov-2018						
	and the second second second	ration					
Reference equipment u	used in the calib	ration					
	used in the calib Model:	Serial No.		Expiry Date:		Traceab	le to:
Description:				Expiry Date: 23-Aug-2019		Traceab CIGISME	
Description: Multi function sound calibrator	Model:	Serial No.					
Description: Multi function sound calibrator Signal generator	Model: B&K 4226	Serial No. 2288444		23-Aug-2019		CIGISME	
Description: Multi function sound calibrator Signal generator Signal generator	Model: B&K 4226 DS 360	Serial No. 2288444 33873		23-Aug-2019 24-Apr-2019		CIGISME CEPREI	
Description: Multi function sound calibrator Signal generator Signal generator Ambient conditions	Model: B&K 4226 DS 360	Serial No. 2288444 33873		23-Aug-2019 24-Apr-2019		CIGISME CEPREI	
Reference equipment u Description: Multi function sound calibrator Signal generator Signal generator Ambient conditions Temperature: Relative humidity:	Model: B&K 4226 DS 360 DS 360	Serial No. 2288444 33873		23-Aug-2019 24-Apr-2019		CIGISME CEPREI	

Test specifications

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

	20/				一有限公司 是
Approved Signatory:	AT	Date:	15-Nov-2018	Company Chop:	\$7105 * 3017
	Feng Junqi				

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

GIN

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

Page

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA1114 02

2 of

1, Electrical Tests

The electrical tests were perfomed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
-	С	Pass	1.0	2.1
	Lin	Pass	2.0	2.2
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	1	- End -	Attain	
Calibrated by:	1~7	Checked by:	Man	
	Fung Chi Yip		Shek Kwong Tat	
Date:	15-Nov-2018	Date:	15-Nov-2018	

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

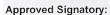
Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道 37號利達中心 12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	18CA1220 02		Page:	1	of	2
Item tested						
Description:	Acoustical Calibra	tor (Class 1)				
Manufacturer:	Larson Davis	, ,				
Type/Model No.:	CAL200					
Serial/Equipment No.:	13128					
Adaptors used:	-					
Item submitted by						
Curstomer:	Lam Environment	al Service Ltd.				
Address of Customer:	-					
Request No.:	-					
Date of receipt:	20-Dec-2018					
Date of test:	28-Dec-2018					
Reference equipment	used in the calib	oration				
Description:	Model:	Serial No.	Expiry Date:	1	Fraceab	le to:
Lab standard microphone	B&K 4180	2412857	20-Apr-2019	5	SCL	
Preamplifier	B&K 2673	2239857	27-Apr-2019	(CEPREI	
Measuring amplifier	B&K 2610	2346941	08-May-2019	(CEPREI	
Signal generator	DS 360	33873	24-Apr-2019		CEPREI	
Digital multi-meter	34401A	US36087050	23-Apr-2019		CEPREI	
Audio analyzer	8903B	GB41300350	23-Apr-2019		CEPREI	
Universal counter	53132A	MY40003662	24-Apr-2019	C	CEPREI	
Ambient conditions						
Temperature:	20 ± 1 °C					
Relative humidity:	50 ± 10 %					
Air pressure:	1000 ± 5 hPa					


Test specifications

- 1, The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Heng Jungi

29-Dec-2018

Company Chop:

Comments: The results reported in this certificate refer to the conditon of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

綜 合 試 驗 有 限 公 司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA1220 02

Page: 2 of

2

1. Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency Shown	Output Sound Pressure Level Setting	Measured Output Sound Pressure Level	Estimated Expanded Uncertainty
Hz	dB	dB	dB
1000	94.00	93.84	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz	STF = 0.006 dB

Estimated expanded uncertainty

3, **Actual Output Frequency**

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

0.005 dB

At 1000 Hz	Actual Frequency = 999.4 Hz	
Estimated expanded uncertainty	0.1 Hz	Coverage factor k = 2.2

4, **Total Noise and Distortion**

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz	TND = 0.4%
Estimated expanded uncertainty	0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	Λ	- End -	1	
Calibrated by:	$\int \sim \chi$	Checked by:	Aan	
	/ Fung Chi Yip		Shek Kwong Tat	
Date:	28-Dec-2018	Date:	29-Dec-2018	

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd

EQUIPMENT PERFORMANCE CHECK / CALIBRATION REPORT

Project Name EQUIPMENT PERFORMANCE CHECK/CALIBRATION REPORT Date of Issue 11/10/2018	
Customer : LAM ENVIRONMENTAL SERVICES LIMITED	
Address : 11/F., CENTRE POINT, 181-185 GLOUCESTER ROAD, WAN CHAI, HONG KONG	
Calibration Job No. : HK1811027	
Test Item No. : HK1811027-01	
Test item Details	
Test Item Description : Sonde	
Manufacturer : YSI	
Model No. : Professional Plus	
Serial No. : 14M100277	
Performance Method : Checked according to in-house method CAL005	
(References: Temperature (Section 6 of Intermational Accreditation New Zealand Technica	l Gi
No. 3 Second edition March 2008: Working Thermometer Calibration Procedure), pH value	
(APHA 21e 4500H:B), Salinity (Refer to Conductivity APHA 19e 2510B)	
, Dissolved oxygen (APHA 19e 4500-O,C))	
Test Item Receipt Date : 11/10/2018	
Test Item Calibration Date : 11/10/2018	

Notes: 1. This report shall not be reproduced, except in full, without prior approval from Pilot Testing Limited.

- 2. Results relate to item(s) as received.
- 3. ± indicates the tolerance limit
- 4. N/A = Not applicable
- 5. APHA American Public Health Association, American Water Works Association and Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WEF. USA
- 6. DO, pH, salinity and temperature performance check was conducted by Pilot Testing Limited.
- Because of high sensitivity and ease of measurement, the conductivity method (according to APHA 19e 2510) is used to determine salinity. 7.

Approved Signatory

Issue Date:

11/10/2018

Ms. Wong Po Yan, Pauline (Assistant Laboratory Manager)

WORK ORDER:HK1811027DATE OF ISSUE:11/10/2018CLIENT:LAM ENVIRONMENTAL SERVICES LIMITED

Equipment Type	Sonde	
Manufacturer	YSI	
Model No.	Professional Plus	
Serial No.	14M100277	
Date of Calibration	11-Oct-18	
Date of next Calibation	11-Jan-19	

Parameters:

Temperature (Method Ref: Section 6 of Intermational Accreditation New Zealand Technical Guide No.3 Second edition March 2008: Working Thermometer Calibration Procedure)

Reference Reading (°C)	Display Reading (°C)	Deviation (°C)
7.0	6.9	-0.1
15.7	16.0	0.4
24.7	24.5	-0.2
T	olerance Limit	±2.0

pH Value (Method Ref: APHA21e, 4500H:B)

Expected Reading (pH unit)	Reference Reading (pH unit)	Display Reading (pH unit)	Deviation (pH unit)
4.0	3.99	3.98	-0.01
7.0	7.01	7.08	0.07
10.0	10.02	10.06	0.04
	Tolerance Limit		±0.20

Conductivity (Method Ref: APHA 19e, 2510)

KCI concentration (mol/L)	Reference Reading (ms/cm)	Display Reading (ms/cm)	Deviation (%)
0.0000	0.00	0.00	
0.1000	12.6	12.6	-0.55
0.2000	23.6	23.6	-0.08
0.5000	55.1	55.7	1.09
	Tolerance Limit		±2.0

Dissolved Oxygen (DO) (Method Ref: APHA 19e, 4500-O, C)

Reference DO reading (mg/L)	DO reading od DO probe (mg/L)	Deviation (mg/L)
6.97	6.92	-0.05
5.15	5.10	-0.05
3.97	4.08	0.11
	Tolerance Limit	±0.20

Remarks:

arks: (1) Maxium tolerance and calibration frequency stated in the report, unless otherewise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

(2) Displayed reading presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

(3) Because of high sensitivity and ease of measurement, the conductivity method (accoridng to APHA 19e 2510) is used to determine salinity.

- End of Report -

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR CHAN KA CHUN CLIENT: LAM ENVIRONMENTAL LTD

ADDRESS: 11/F, CENTRE POINT, 181 - 185 GLOUCESTER ROAD WAN CHAI, HONG KONG WORK ORDER: H

HK1900006

SUB-BATCH:0LABORATORY:HONG KONGDATE RECEIVED:31- Dec- 2018DATE OF ISSUE:10- Jan- 2019

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:Dissolved Oxygen, pH Value, Salinity and TemperatureEquipment Type:Multifunctional MeterBrand Name:YSIModel No.:Professional PlusSerial No.:14M100277Equipment No.:--

10 January, 2019

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ma Aij

Mr Chan Siu Ming, Vico Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Date of Calibration:

WORK ORDER:	HK1900006		ALS
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 10- Jan- 2019 LAM ENVIRONMENTAL LTD		
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Multifunctional Meter YSI Professional Plus 14M100277 10 January, 2019	Date of Next Calibration:	10 April, 2019

PARAMETERS: Dissolved Oxygen

/gen Method Ref: APHA (21st edition), 4500–O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
2.67	2.47	- 0.20
6.20	6.28	+ 0.08
8.88	8.83	- 0.05
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	3.97	- 0.03
7.0	6.84	- 0.16
10.0	10.03	+ 0.03
	Tolerance Limit (pH unit)	±0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	10.36	+ 3.6
20	18.90	- 5.5
30	27.77	- 7.4
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ma Alin

Mr Chan Siu Ming, Vico Manager - Inorganic

WORK ORDER:	HK1900006			ALS
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 10- Jan- 2019 LAM ENVIRONMENTAL LTD			
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Multifunctional Meter YSI Professional Plus 14M100277 10 January, 2019	Date of Next Calibration:	10 April, 2019	
DADAMETERS.				

PARAMETERS: Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.5	11.3	+ 0.8
21.0	19.8	- 1.2
40.5	39.4	- 1.1
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ma Alin

Mr Chan Siu Ming, Vico Manager - Inorganic

EQUIPMENT PERFORMANCE CHECK / CALIBRATION REPORT

Report No. Project Name Date of Issue	HK1811013 EQUIPMENT PERFORMANCE CHECK/CALIBRATION REPORT 10/10/2018
Customer	LAM ENVIRONMENTAL SERVICES LIMITED
Address	11/F., CENTRE POINT, 181-185 GLOUCESTER ROAD, WAN CHAI, HONG KONG
Calibration Job No.	HK1811013
Test Item No.	HK1811013-01
Test Item Details	
Test Item Description	Sonde
Manufacturer	YSI
Model No.	Professional Plus
Serial No.	17F100236
Performance Method	Checked according to in-house method CAL005
	(References: Temperature (Section 6 of International Accreditation New Zealand Technical G
	No. 3 Second edition March 2008: Working Thermometer Calibration Procedure), pH value
	(APHA 21e 4500H:B), Salinity (Refer to Conductivity APHA 19e 2510B)
	, Dissolved oxygen (APHA 19e 4500-O,C))
Test Item Receipt Date	8/10/2018
Test Item Calibration Date	9/10/2018

Notes: 1. This report shall not be reproduced, except in full, without prior approval from Pilot Testing Limited.

- 2. Results relate to item(s) as received.
- 3. ± indicates the tolerance limit
- 4. N/A = Not applicable
- 5. APHA American Public Health Association, American Water Works Association and Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WEF. USA
- DO, pH, salinity and temperature performance check was conducted by Pilot Testing Limited.
 Because of high sensitivity and ease of measurement, the conductivity method (according to APHA 19e 2510) is used to determine salinity.

Approved Signatory

Ms. Wong Po Yan, Pauline

(Assistant Laboratory Manager)

Issue Date:

10/10/2018

WORK ORDER:HK1811013DATE OF ISSUE:10/10/2018CLIENT:LAM ENVIRONMENTAL SERVICES LIMITED

Equipment Type	Sonde	
Manufacturer	YSI	
Model No.	Professional Plus	
Serial No.	17F100236	
Date of Calibration	09-Oct-18	
Date of next Calibation	09-Jan-19	

Parameters:

Temperature (Method Ref: Section 6 of Intermational Accreditation New Zealand Technical Guide No.3 Second edition March 2008: Working Thermometer Calibration Procedure)

Reference Reading (°C)	Display Reading (°C)	Deviation (°C)
6.3	6.3	0.0
14.6	14.4	-0.2
25.6	25.5	-0.1
	Folerance Limit	±2.0

pH Value (Method Ref: APHA21e, 4500H:B)

Expected Reading (pH unit)	Reference Reading (pH unit)	Display Reading (pH unit)	Deviation (pH unit)
4.0	3.99	4.01	0.02
7.0	6.97	7.01	0.04
10.0	10.03	10.04	0.01
	Tolerance Limit		±0.20

Conductivity (Method Ref: APHA 19e, 2510)

KCI concentration (mol/L)	Reference Reading (ms/cm)	Display Reading (ms/cm)	Deviation (%)
0.0000	0.00	0.00	
0.1000	12.2	12.1	-0.33
0.2000	24.0	23.9	-0.58
0.5000	57.1	56.9	-0.32
	Tolerance Limit		±2.0

Dissolved Oxygen (DO) (Method Ref: APHA 19e, 4500-O, C)

Reference DO reading (mg/L)	DO reading od DO probe (mg/L)	Deviation (mg/L)
7.14	7.18	0.04
6.79	6.81	0.02
4.80	4.93	0.13
	Tolerance Limit	±0.20

Remarks:

arks: (1) Maxium tolerance and calibration frequency stated in the report, unless otherewise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

(2) Displayed reading presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

(3) Because of high sensitivity and ease of measurement, the conductivity method (accoridng to APHA 19e 2510) is used to determine salinity.

- End of Report -

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:	MR CHAN KA CHUN	WORK ORDER:	HK1901812
CLIENT:	LAM ENVIRONMENTAL LTD		
ADDRESS:	11/F, CENTRE POINT, 181 - 185 GLOUCESTER ROAD	SUB-BATCH: LABORATORY:	0 Hong Kong
	WAN CHAI	DATE RECEIVED:	10-Jan-2019
		DATE OF ISSUE:	18-Jan-2019

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Dissolved Oxygen, pH Value, Salinity and Temperature
Equipment Type:	Multifunctional Meter
Brand Name:	YSI
Model No.:	Professional Plus
Serial No.:	17F100236
Equipment No.:	
Date of Calibration:	18 January, 2019

<u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ma Ai

Mr Chan Siu Ming, Vico Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

WORK ORDER:	HK1901812		ALS	>
SUB-BATCH:	0			
DATE OF ISSUE:	18-Jan-2019			
CLIENT:	LAM ENVIRONMENTAL LTD			
Equipment Type:	Multifunctional Meter			
Brand Name:	YSI			
Model No.:	Professional Plus			
Serial No.:	17F100236			
Equipment No.:				
Date of Calibration:	18 January, 2019	Date of Next Calibration:	18 April, 2019	

PARAMETERS:

Dissolved Oxygen Method Ref: APHA (21st edition), 4500-O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	
2.65	2.45	-0.20	
6.02	5.92	-0.10	
8.88	8.94	+0.06	
	Tolerance Limit (mg/L)	±0.20	

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	4.03	+0.03
7.0	7.08	+0.08
10.0	10.16	+0.16
	Tolerance Limit (pH unit)	±0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	10.20	+2.0
20	19.68	-1.6
30	29.74	-0.9
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ma Sing

Mr Chan Siu Ming, Vico Manager - Inorganic

WORK ORDER:	HK1901812			ALS
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 18-Jan-2019 LAM ENVIRONMENTAL LTD			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.:	Multifunctional Meter YSI Professional Plus 17F100236 	Data of Neut Calibration.	10 April 2010	
Date of Calibration: PARAMETERS:	18 January, 2019	Date of Next Calibration:	18 April, 2019	
Temperature	Method Ref: Section 6 of Inte	rnational Accreditation New Zealar	nd Technical	
i omporatoro				0
		larch 2008: Working Thermometer	Calibration Procedur	e.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	9.5	-0.5
22.0	21.3	-0.7
41.5	42.3	+0.8
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ma Si

Mr Chan Siu Ming, Vico Manager - Inorganic

Information supplie	ed by customer:	
CONTACT:	MR. SAM LAM	WORK ORDER: HK1811070
CLIENT:	LAM GEOTECHNICS LIMITE	D
DATE RECEIVED	: 24/10/2018	
DATE OF ISSUE:	25/10/2018	
ADDRESS:	11/F, CENTRE POINT, 181-185,	GLOUCESTER ROAD,
	WANCHAI, HONG KONG	
PROJECT:		

METHOD OF PERFORMANCE CHECK/ CALIBRATION: Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

Scope of Test:	Turbidity
Equipment Type:	Turbidimeter
Brand Name:	Xin Rui
Model No.:	WGZ-3B
Serial No.:	1309192
Equipment No.:	
Date of Calibration:	25/10/2018
D 1	

Remarks:

Approved Signatory:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ms. Wong Po Yan, Pauline Assistant Laboratory Manager Issue Date:

25/10/2018

WORK ORDER:HK1811070DATE OF ISSUE:25/10/2018CLIENT:LAM GEOTECHNICS LIMITED

Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1309192	
Equipment No.:		
Date of Calibration:	25/10/2018	
Date of next Calibation:	25/01/2019	

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Display Reading (NTU)	Tolerance	
0	0.00		
4	3.95	-1.3%	
10	10.58	5.8%	
40	39.06	-2.3%	
100	100.50	0.5%	
400	397	-0.7%	
1000	997	-0.3%	
	Tolerance Limit (\pm)	10%	

Page 1/2

REPORT OF EQUIPMENT PERFORMANCE CHECK / CALIBRATION

Information supplied by customer: WORK ORDER: HK1811147 **CONTACT:** MR. SAM LAM **CLIENT:** LAM GEOTECHNICS LIMITED DATE RECEIVED: 16/11/2018 DATE OF ISSUE: 19/11/2018 11/F, CENTRE POINT, 181-185, GLOUCESTER ROAD, **ADDRESS:** WANCHAI, HONG KONG **PROJECT:**

METHOD OF PERFORMANCE CHECK/ CALIBRATION: Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

Scope of Test:	Turbidity
Equipment Type:	Turbidimeter
Brand Name:	Xin Rui
Model No.:	WGZ-3B
Serial No.:	1403009
Equipment No.:	
Date of Calibration:	19/11/2018

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Approved Signatory:

Ms. Wong Po Yan, Pauline Assistant Laboratory Manager

Issue Date:

19/11/2018

WORK ORDER:	HK1811147
DATE OF ISSUE:	19/11/2018
CLIENT:	LAM GEOTECHNICS LIMITED

Equipment Type:	Turbidimeter
Brand Name:	Xin Rui
Model No.:	WGZ-3B
Serial No.:	1403009
Equipment No.:	
Date of Calibration:	19/11/2018
Date of next Calibation:	19/02/2019

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Display Reading (NTU)	Tolerance	
0	0.00		
4	3.98	-0.5%	
10	10.12	1.2%	
40	43.50	8.8%	
100	103.00	3.0%	
400	396	-1.0%	
1000	925	-7.5%	
	Tolerance Limit (±)	10%	

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

Information supplied	d by customer:	
CONTACT:	MR. SAM LAM	WORK ORDER: HK1811031
CLIENT:	LAM GEOTECHNICS	LIMITED
DATE RECEIVED:	11/10/2018	
DATE OF ISSUE:	12/10/2018	
ADDRESS:	11/F, CENTRE POINT	, 181-185, GLOUCESTER ROAD,
	WANCHAI, HONG K	ONG
PROJECT:		

METHOD OF PERFORMANCE CHECK/ CALIBRATION: Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

Scope of Test:	Turbidity	
Equipment Type:	Turbidity Meter	
Brand Name:	PCE Instruments	
Model No.:	PCE-TUM 20	
Serial No.:	Q942542	
Equipment No.:		
Date of Calibration:	12/10/2018	

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Approved Signatory:

Ms. Wong Po Yan, Pauline Assistant Laboratory Manager Issue Date:

12/10/2018

WORK ORDER:	HK1811031
DATE OF ISSUE:	12/10/2018
CLIENT:	LAM GEOTECHNICS LIMITED

Equipment Type:	Turbidity Meter	
Brand Name:	PCE Instruments	
Model No.:	PCE-TUM 20	
Serial No.:	Q942542	
Equipment No.:		
Date of Calibration:	12/10/2018	
Date of next Calibation:	12/01/2019	

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Display Reading (NTU)	Tolerance	
0	0.00		
10	10.50	5.0%	
20	20.50	2.5%	
40	41.48	3.7%	
100	99	-1.0%	
400	401	0.3%	
800	788	-1.5%	
	Tolerance Limit (±)	10%	

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.